cd02910, cupin_Yhhw_N, Escherichia coli YhhW and YhaK and related proteins, pirin-like bicupin, N-terminal cupin domain. This family includes the N-terminal cupin domains of YhhW and YhaK, Escherichia coli pirin-like proteins with unknown function. YhhW is structurally similar not only to human pirin but also to quercitin 2,3-dioxygenase (quercitinase). Although the function of YhhW is not completely understood, YhhW and its human ortholog have quercitinase activity and are likely to play an important role in transcription and apoptosis. This N-terminal cupin domain of YhhW has a metal coordination site and is thought to have catalytic activity while the C-terminal cupin-like domain has diverged considerably and has closer alignment with C-terminal pirin. YhaK is found in low abundance in the cytosol of E. coli and is strongly up-regulated by nitroso-glutathione (GSNO). There are major structural differences at the N-terminus of YhaK compared with YhhW; YhaK lacks the canonical cupin metal-binding residues of pirins and may be involved in chloride binding and/or sensing of oxidative stress in enterobacteria. YhaK showed no quercetinase and peroxidase activity; however, reduced YhaK was very sensitive to reactive oxygen species (ROS). Proteins in this family belong to the cupin superfamily with a conserved "jelly roll-like" beta-barrel fold.
cd12952, MMP_ACEL2062, Minimal MMP-like domain found in Acidothermus cellulolyticus hypothetical protein ACEL2062 and similar protein. The subfamily includes an uncharacterized protein from Acidothermus cellulolyticus (ACEL2062) and its homologs from bacteria. Although its biological role remains unclear, ACEL2062 contains a minimal metalloprotease (MMP)-like domain consisting of 3-stranded mixed 2-beta sheets and a HExxHxxGxxD/S (x could be any amino acid) motif. It may belong to a superfamily of bacterial zinc metallo-peptidases, which is characterized by a conserved HExxHxxGxxD motif.
pfam01471, PG_binding_1, Putative peptidoglycan binding domain. This domain is composed of three alpha helices. This domain is found at the N or C-terminus of a variety of enzymes involved in bacterial cell wall degradation. This domain may have a general peptidoglycan binding function. This family is found N-terminal to the catalytic domain of matrixins. The domain is found to bind peptidoglycan experimentally.
cd00761, Glyco_tranf_GTA_type, Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
pfam07366, SnoaL, SnoaL-like polyketide cyclase. This family includes SnoaL a polyketide cyclase involved in nogalamycin biosynthesis. This family was formerly known as DUF1486. The proteins in this family adopt a distorted alpha-beta barrel fold. Structural data together with site-directed mutagenesis experiments have shown that SnoaL has a different mechanism to that of the classical aldolase for catalyzing intramolecular aldol condensation.
cd09086, ExoIII-like_AP-endo, Escherichia coli exonuclease III (ExoIII) and Neisseria meningitides NExo-like subfamily of the ExoIII family purinic/apyrimidinic (AP) endonucleases. This subfamily includes Escherichia coli ExoIII, Neisseria meningitides NExo,and related proteins. These are ExoIII family AP endonucleases and they belong to the large EEP (exonuclease/endonuclease/phosphatase) superfamily that contains functionally diverse enzymes that share a common catalytic mechanism of cleaving phosphodiester bonds. AP endonucleases participate in the DNA base excision repair (BER) pathway. AP sites are one of the most common lesions in cellular DNA. During BER, the damaged DNA is first recognized by DNA glycosylase. AP endonucleases then catalyze the hydrolytic cleavage of the phosphodiester bond 5' to the AP site, and this is followed by the coordinated actions of DNA polymerase, deoxyribose phosphatase, and DNA ligase. If left unrepaired, AP sites block DNA replication, and have both mutagenic and cytotoxic effects. AP endonucleases can carry out a variety of excision and incision reactions on DNA, including 3'-5' exonuclease, 3'-deoxyribose phosphodiesterase, 3'-phosphatase, and occasionally, nonspecific DNase activities. Different AP endonuclease enzymes catalyze the different reactions with different efficiencies. Many organisms have two AP endonucleases, usually one is the dominant AP endonuclease, the other has weak AP endonuclease activity. For example, Neisseria meningitides Nape and NExo, and exonuclease III (ExoIII) and endonuclease IV (EndoIV) in Escherichia coli. NExo and ExoIII are found in this subfamily. NExo is the non-dominant AP endonuclease. It exhibits strong 3'-5' exonuclease and 3'-deoxyribose phosphodiesterase activities. Escherichia coli ExoIII is an active AP endonuclease, and in addition, it exhibits double strand (ds)-specific 3'-5' exonuclease, exonucleolytic RNase H, 3'-phosphomonoesterase and 3'-phosphodiesterase activities, all catalyzed by a single active site. Class II AP endonucleases have been classified into two families, designated ExoIII and EndoIV, based on their homology to the Escherichia coli enzymes ExoIII and endonuclease IV (EndoIV). This subfamily belongs to the ExoIII family; the EndoIV family belongs to a different superfamily.
pfam00535, Glycos_transf_2, Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd01160, LCAD, Long chain acyl-CoA dehydrogenase. LCAD is an acyl-CoA dehydrogenases (ACAD), which is found in the mitochondria of eukaryotes and in some prokaryotes. It catalyzes the alpha, beta dehydrogenation of the corresponding trans-enoyl-CoA by FAD, which becomes reduced. The reduced form of LCAD is reoxidized in the oxidative half-reaction by electron-transferring flavoprotein (ETF), from which the electrons are transferred to the mitochondrial respiratory chain coupled with ATP synthesis. LCAD acts as a homodimer.
cd05333, BKR_SDR_c, beta-Keto acyl carrier protein reductase (BKR), involved in Type II FAS, classical (c) SDRs. This subgroup includes the Escherichai coli K12 BKR, FabG. BKR catalyzes the NADPH-dependent reduction of ACP in the first reductive step of de novo fatty acid synthesis (FAS). FAS consists of four elongation steps, which are repeated to extend the fatty acid chain through the addition of two-carbo units from malonyl acyl-carrier protein (ACP): condensation, reduction, dehydration, and a final reduction. Type II FAS, typical of plants and many bacteria, maintains these activities on discrete polypeptides, while type I FAS utilizes one or two multifunctional polypeptides. BKR resembles enoyl reductase, which catalyzes the second reduction step in FAS. SDRs are a functionally diverse family of oxidoreductases that have a single domain with structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet) NAD(P)(H) binding region and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRS are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes have a 3-glycine N-terminal NAD(P)(H) binding pattern: TGxxxGxG in classical SDRs. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P) binding motif and an altered active site motif (YXXXN). Fungal type type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P) binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. A critical catalytic Tyr residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering), is often found in a conserved YXXXK pattern. In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) or additional Ser, contributing to the active site. Substrates for these enzymes include sugars, steroids, alcohols, and aromatic compounds. The standard reaction mechanism is a proton relay involving the conserved Tyr-151 and Lys-155, and well as Asn-111 (or Ser). Some SDR family members, including 17 beta-hydroxysteroid dehydrogenase contain an additional helix-turn-helix motif that is not generally found among SDRs.
cd06850, biotinyl_domain, The biotinyl-domain or biotin carboxyl carrier protein (BCCP) domain is present in all biotin-dependent enzymes, such as acetyl-CoA carboxylase, pyruvate carboxylase, propionyl-CoA carboxylase, methylcrotonyl-CoA carboxylase, geranyl-CoA carboxylase, oxaloacetate decarboxylase, methylmalonyl-CoA decarboxylase, transcarboxylase and urea amidolyase. This domain functions in transferring CO2 from one subsite to another, allowing carboxylation, decarboxylation, or transcarboxylation. During this process, biotin is covalently attached to a specific lysine.
cd01158, SCAD_SBCAD, Short chain acyl-CoA dehydrogenases and eukaryotic short/branched chain acyl-CoA dehydrogenases. Short chain acyl-CoA dehydrogenase (SCAD). SCAD is a mitochondrial beta-oxidation enzyme. It catalyzes the alpha,beta dehydrogenation of the corresponding trans-enoyl-CoA by FAD, which becomes reduced. The reduced form of SCAD is reoxidized in the oxidative half-reaction by electron-transferring flavoprotein (ETF), from which the electrons are transferred to the mitochondrial respiratory chain coupled with ATP synthesis. This subgroup also contains the eukaryotic short/branched chain acyl-CoA dehydrogenase(SBCAD), the bacterial butyryl-CoA dehydorgenase(BCAD) and 2-methylbutyryl-CoA dehydrogenase, which is involved in isoleucine catabolism. These enzymes are homotetramers.
pfam00924, MS_channel, Mechanosensitive ion channel. Two members of this protein family of M. jannaschii have been functionally characterized. Both proteins form mechanosensitive (MS) ion channels upon reconstitution into liposomes and functional examination by the patch-clamp technique. Therefore this family are likely to also be MS channel proteins.
cd05371, HSD10-like_SDR_c, 17hydroxysteroid dehydrogenase type 10 (HSD10)-like, classical (c) SDRs. HSD10, also known as amyloid-peptide-binding alcohol dehydrogenase (ABAD), was previously identified as a L-3-hydroxyacyl-CoA dehydrogenase, HADH2. In fatty acid metabolism, HADH2 catalyzes the third step of beta-oxidation, the conversion of a hydroxyl to a keto group in the NAD-dependent oxidation of L-3-hydroxyacyl CoA. In addition to alcohol dehydrogenase and HADH2 activites, HSD10 has steroid dehydrogenase activity. Although the mechanism is unclear, HSD10 is implicated in the formation of amyloid beta-petide in the brain (which is linked to the development of Alzheimer's disease). Although HSD10 is normally concentrated in the mitochondria, in the presence of amyloid beta-peptide it translocates into the plasma membrane, where it's action may generate cytotoxic aldehydes and may lower estrogen levels through its use of 17-beta-estradiol as a substrate. HSD10 is a member of the SRD family, but differs from other SDRs by the presence of two insertions of unknown function. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
cd00586, 4HBT, 4-hydroxybenzoyl-CoA thioesterase (4HBT). Catalyzes the final step in the 4-chlorobenzoate degradation pathway in which 4-chlorobenzoate is converted to 4-hydroxybenzoate in certain soil-dwelling bacteria. 4HBT forms a homotetramer with four active sites. There is no evidence to suggest that 4HBT is related to the type I thioesterases functioning in primary or secondary metabolic pathways. Each subunit of the 4HBT tetramer adopts a so-called hot-dog fold similar to those of beta-hydroxydecanoyl-ACP dehydratase, (R)-specific enoyl-CoA hydratase, and type II, thioesterase (TEII).
pfam17928, TetR_C_22, Tetracyclin repressor-like, C-terminal domain. TetR family regulators are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. The TetR proteins identified in overm ultiple genera of bacteria and archaea share a common helix-turn-helix (HTH) structure in their DNA-binding domain. However, TetR proteins can work in different ways: they can bind a target operator directly to exert their effect (e.g. TetR binds Tet(A) gene to repress it in the absence of tetracycline), or they can be involved in complex regulatory cascades in which the TetR protein can either be modulated by another regulator or TetR can trigger the cellular response. TetR regulates the expression of the membrane-associated tetracycline resistance protein, TetA, which exports the tetracycline antibiotic out of the cell before it can attach to the ribosomes and inhibit protein synthesis. TetR blocks transcription from the genes encoding both TetA and TetR in the absence of antibiotic. The C-terminal domain is multi-helical and is interlocked in the homodimer with the helix-turn-helix (HTH) DNA-binding domain. This entry represents the C-terminal domain present the TetR Transcriptional Repressor present in sco1712 proteins from Streptomyces coelicolo which act as a regulator of antibiotic production.
TIGR03384, betaine_BetI, transcriptional repressor BetI. BetI is a DNA-binding transcriptional repressor of the bet (betaine) regulon. In sequence, it is related to TetR (pfam00440). Choline, through BetI, induces the expression of the betaine biosynthesis genes betA and betB by derepression. The choline porter gene betT is also part of this regulon in Escherichia coli. Note that a different transcriptional regulator, ArcA, controls the expression of bet regulon genes in response to oxygen, as BetA is an oxygen-dependent enzyme. [Regulatory functions, DNA interactions].
cd04730, NPD_like, 2-Nitropropane dioxygenase (NPD), one of the nitroalkane oxidizing enzyme families, catalyzes oxidative denitrification of nitroalkanes to their corresponding carbonyl compounds and nitrites. NDP is a member of the NAD(P)H-dependent flavin oxidoreductase family that reduce a range of alternative electron acceptors. Most use FAD/FMN as a cofactor and NAD(P)H as electron donor. Some contain 4Fe-4S cluster to transfer electron from FAD to FMN.
cd05154, ACAD10_11_N-like, N-terminal domain of Acyl-CoA dehydrogenase (ACAD) 10 and 11, and similar proteins. This subfamily is composed of the N-terminal domains of vertebrate ACAD10 and ACAD11, and similar uncharacterized bacterial and eukaryotic proteins. ACADs are a family of flavoproteins that are involved in the beta-oxidation of fatty acyl-CoA derivatives. ACAD deficiency can cause metabolic disorders including muscle fatigue, hypoglycemia, and hepatic lipidosis. There are at least 11 distinct ACADs, some of which show distinct substrate specificities to either straight-chain or branched-chain fatty acids. ACAD10 is widely expressed in human tissues and highly expressed in liver, kidney, pancreas, and spleen. ACAD10 and ACAD11 are both significantly expressed in human brain tissues. They contain a long N-terminal domain with similarity to phosphotransferases with a Protein Kinase fold, which is absent in other ACADs. They may exhibit multiple functions in acyl-CoA oxidation pathways. ACAD11 utilizes substrates with carbon chain lengths of 20 to 26, with optimal activity towards C22CoA. ACAD10 may be associated with an increased risk in type II diabetes. The ACAD10/11-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K).
1.17589e-101
CP026952.1|AWB91664.1|1084002_1084395_-|globin
gnl|CDD|381280
cd14771, TrHb2_Mt-trHbO-like_O, Truncated hemoglobins, group 2 (O); Mycobacterium tuberculosis hemoglobin O like. The M- and S families exhibit the canonical secondary structure of hemoglobins, a 3-over-3 alpha-helical sandwich structure (3/3 Mb-fold), built by eight alpha-helical segments. Truncated hemoglobins (TrHbs, 2/2Hb, or 2/2 globins) or the T family globins adopt a 2-on-2 alpha-helical sandwich structure, resulting from extensive and complex modifications of the canonical 3-on-3 alpha-helical sandwich that are distributed throughout the whole protein molecule. TrHbs are classified into three main groups based on their structural properties and named after Mycobacterium sp. genes glbN, glbO, and glbP: TrHb1s (N), TrHb2s (O) and TrHb3s (P). This group includes a Mycobacterium tuberculosis TrHb2, Mt-trHbO, encoded by the Mycobacterium tuberculosis glbO gene, which is expressed throughout the Mycobacterium growth phase. It also includes a TrHb2 from the thermophilic Thermobifida fusca ( Tf-trHb) which has a high thermostability and at the optimal growth temperature for Thermobifida fusca (between 55 and 60 degrees C ), it is capable of efficient O2 binding and release. Tf-trHb shares a relatively slow rate of oxygen binding with Mt-trHbO.
cd06262, metallo-hydrolase-like_MBL-fold, mainly hydrolytic enzymes and related proteins which carry out various biological functions; MBL-fold metallohydrolase domain. Members of the MBL-fold metallohydrolase superfamily are mainly hydrolytic enzymes which carry out a variety of biological functions. The class B metal beta-lactamases (MBLs) for which this fold was named perform only a small fraction of the activities included in this superfamily. Activities carried out by superfamily members include class B beta-lactamases which can catalyze the hydrolysis of a wide range of beta-lactam antibiotics, hydroxyacylglutathione hydrolases (also called glyoxalase II) which hydrolyze S-d-lactoylglutathione to d-lactate in the second step of the glycoxlase system, AHL lactonases which catalyze the hydrolysis and opening of the homoserine lactone rings of acyl homoserine lactones (AHLs), persulfide dioxygenase which catalyze the oxidation of glutathione persulfide to glutathione and persulfite in the mitochondria, flavodiiron proteins which catalyze the reduction of oxygen and/or nitric oxide to water or nitrous oxide respectively, cleavage and polyadenylation specificity factors such as the Int9 and Int11 subunits of Integrator, Sdsa1-like and AtsA-like arylsulfatases, 5'-exonucleases human SNM1A and yeast Pso2p, ribonuclease J which has both 5'-3' exoribonucleolytic and endonucleolytic activity and ribonuclease Z which catalyzes the endonucleolytic removal of the 3' extension of the majority of tRNA precursors, cyclic nucleotide phosphodiesterases which decompose cyclic adenosine and guanosine 3', 5'-monophosphate (cAMP and cGMP) respectively, insecticide hydrolases, and proteins required for natural transformation competence. The diversity of biological roles is reflected in variations in the active site metallo-chemistry, for example classical members of the superfamily are di-, or less commonly mono-, zinc-ion-dependent hydrolases, human persulfide dioxygenase ETHE1 is a mono-iron binding member of the superfamily; Arabidopsis thaliana hydroxyacylglutathione hydrolases incorporates iron, manganese, and zinc in its dinuclear metal binding site, and flavodiiron proteins contains a diiron site.
TIGR03718, R_switched_Alx, integral membrane protein, TerC family. Rfam model RF00080 describes a structured RNA element called the yybP-ykoY leader, or SraF, which may precede one or several genes in a genome. Members of this highly hydrophobic protein family often are preceded by a yybP-ykoY leader, which may serve as a riboswitch. From the larger group of TerC homologs (pfam03741), this subfamily contains TerC itself from Alcaligenes sp. plasmid IncHI2 pMER610 and from Proteus mirabilis. It also contains the alkaline-inducible E. coli protein Alx, which unlike the two TerC examples is preceded by a yybP-ykoY leader.
pfam10604, Polyketide_cyc2, Polyketide cyclase / dehydrase and lipid transport. This family contains polyketide cylcases/dehydrases which are enzymes involved in polyketide synthesis. It also includes other proteins of the START superfamily.
TIGR01826, Putative_gluconeogenesis_factor, conserved hypothetical protein, cofD-related. This model represents a subfamily of conserved hypothetical proteins that forms a sister group to the family of CofD, (TIGR01819), LPPG:Fo 2-phospho-L-lactate transferase, an enzyme of cytochrome F420 biosynthesis. Both this family and TIGR01819 are within the scope of the pfam01933. [Hypothetical proteins, Conserved].
TIGR00647, DNA_bind_WhiA, DNA-binding protein WhiA. This family describes a DNA-binding protein widely conserved in Gram-positive bacteria, and occasionally occurring elsewhere, such as in Thermotoga. It is associated with cell division, and in sporulating organisms with sporulation. [Cellular processes, Cell division].
pfam02656, DUF202, Domain of unknown function (DUF202). This family consists of hypothetical proteins some of which are putative membrane proteins. No functional information or experimental verification of function is known. This domain is around 100 amino acids long.