TIGR01786, hemoglobin-haptoglobin-binding_protein, TonB-dependent hemoglobin/transferrin/lactoferrin receptor family protein. This model represents a family of TonB-dependent outer membrane receptor/transporters acting on iron-containing proteins such as hemoglobin, transferrin and lactoferrin. Two subfamily models with a narrower scope are contained within this model, the heme/hemoglobin receptor family protein model (TIGR01785) and the transferrin/lactoferrin receptor family model (TIGR01776). Accessions which score above trusted to this model while not scoring above trusted to the more specific models are most likely to be hemoglobin transporters. Nearly all of the species containing trusted hits to this model have access to hemoglobin, transferrin or lactoferrin or related proteins in their biological niche. [Transport and binding proteins, Cations and iron carrying compounds, Transport and binding proteins, Porins].
COG1432, COG1432, Uncharacterized conserved protein [Function unknown].
1.35322e-27
CP034314.1|AZL52382.1|933441_934968_-|catalase
gnl|CDD|163712
cd08156, catalase_clade_3, Clade 3 of the heme-binding enzyme catalase. Catalase is a ubiquitous enzyme found in both prokaryotes and eukaryotes, which is involved in the protection of cells from the toxic effects of peroxides. It catalyzes the conversion of hydrogen peroxide to water and molecular oxygen. Catalases also utilize hydrogen peroxide to oxidize various substrates such as alcohol or phenols. Clade 3 catalases are the most abundant subfamily and are found in all three kingdoms of life; they have a relatively small subunit size of 43 to 75 kDa, and bind a protoheme IX (heme b) group buried deep inside the structure. Clade 3 catalases also bind NADPH as a second redox-active cofactor. They form tetramers, and in eukaryotic cells, catalases are located in peroxisomes.
TIGR00084, Holliday_junction_ATP-dependent_DNA_helicase_RuvA, Holliday junction DNA helicase, RuvA subunit. RuvA specifically binds Holliday junctions as a sandwich of two tetramers and maintains the configuration of the junction. It forms a complex with two hexameric rings of RuvB, the subunit that contains helicase activity. The complex drives ATP-dependent branch migration of the Holliday junction recombination intermediate. The endonuclease RuvC resolves junctions. [DNA metabolism, DNA replication, recombination, and repair].
COG1120, FepC, ABC-type cobalamin/Fe3+-siderophores transport systems, ATPase components [Inorganic ion transport and metabolism / Coenzyme metabolism].
pfam02691, VacA, Vacuolating cyotoxin. This family consists of Vacuolating cyotoxin proteins form Proteobacteria. These proteins are an important virulence determinate in H. pylori and induce cytoplasmic vacuolation in a variety of mammalian cell lines.
TIGR00075, Hydrogenase_isoenzymes_formation_protein_HypD, hydrogenase expression/formation protein HypD. HypD is involved in the hyp operon which is needed for the activity of the three hydrogenase isoenzymes in Escherichia coli. HypD is one of the genes needed for formation of these enzymes. This protein has been found in gram-negative and gram-positive bacteria and Archaea. [Protein fate, Protein modification and repair].
pfam03023, MVIN, MviN-like protein. Deletion of the mviN virulence gene in Salmonella enterica serovar. Typhimurium greatly reduces virulence in a mouse model of typhoid-like disease. Open reading frames encoding homologs of MviN have since been identified in a variety of bacteria, including pathogens and non-pathogens and plant-symbionts. In the nitrogen-fixing symbiont Rhizobium tropici, mviN is required for motility. The MviM protein is predicted to be membrane-associated.
pfam02075, RuvC, Crossover junction endodeoxyribonuclease RuvC. This entry includes endodeoxyribonucleases found in bacteria, such as RuvC. RuvC is a small protein of about 20 kD. It requires and binds a magnesium ion. The structure of E. coli RuvC is a 3-layer alpha-beta sandwich containing a 5-stranded beta-sheet sandwiched between 5 alpha-helices. The Escherichia coli RuvC gene is involved in DNA repair and in the late step of RecE and RecF pathway recombination. RuvC protein (EC:3.1.22.4) cleaves cruciform junctions, which are formed by the extrusion of inverted repeat sequences from a super-coiled plasmid and which are structurally analogous to Holliday junctions, by introducing nicks into strands with the same polarity. The nicks leave a 5'terminal phosphate and a 3'terminal hydroxyl group which are ligated by E. coli or Bacteriophage T4 DNA ligases. Analysis of the cleavage sites suggests that DNA topology rather than a particular sequence determines the cleavage site. RuvC protein also cleaves Holliday junctions that are formed between gapped circular and linear duplex DNA by the function of RecA protein. The active form of RuvC protein is a dimer. This is mechanistically suited for an endonuclease involved in swapping DNA strands at the crossover junctions. It is inferred that RuvC protein is an endonuclease that resolves Holliday structures in vivo.
pfam18304, SabA_adhesion, SabA N-terminal extracellular adhesion domain. This is the N-terminal extracellular adhesion domain of Sialic acid binding adhesin (SabA) present in Helicobacter pylori. The N-terminal domain of SabA functions as a sugar-binding adhesion domain with conserved disulfide bonds. Notably, these amino acid residues are not only conserved among SabA orthologs but also between SabA and BabA.
cd05374, 17beta-HSD-like_SDR_c, 17beta hydroxysteroid dehydrogenase-like, classical (c) SDRs. 17beta-hydroxysteroid dehydrogenases are a group of isozymes that catalyze activation and inactivation of estrogen and androgens. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction.
pfam01032, FecCD, FecCD transport family. This is a sub-family of bacterial binding protein-dependent transport systems family. This Pfam entry contains the inner components of this multicomponent transport system.