pfam03724, META, META domain. Small domain family found in proteins of of unknown function. Some are secreted and implicated in motility in bacteria. Also occurs in Leishmania spp. as an essential gene. Over-expression in L.amazonensis increases virulence. A pair of cysteine residues show correlated conservation, suggesting that they form a disulphide bond.
cd17906, CheX, chemotaxis phosphatase CheX. This family contains CheX CheY-P phosphatase which is very closely related to CheC chemotaxis phosphatase; both dephosphorylate CheY, although CheC requires binding of CheD to achieve the level of activity of CheX. CheX has been shown to be the most powerful CheY-P phosphatase of the CheC-FliY-CheX (CXY) family. Structural and functional data of CheX and its CheY3 substrate in Borrelia burgdorferi (the causative agent of Lyme disease) bound to the phosphoryl analog BeF3(-) and Mg2+ reveal a unique mode of binding, but a catalytic mechanism which is virtually identical to that used by the structurally unrelated CheZ, providing a striking example of convergent evolution. Thus, CheX is quite divergent from the rest of the CXY family; it forms a dimer and some may function outside chemotaxis. The data also suggest a possible CheX regulatory mechanism through dissociation of the CheX homodimer.
pfam04024, PspC, PspC domain. This family includes Phage shock protein C (PspC) that is thought to be a transcriptional regulator. The presumed domain is 60 amino acid residues in length.
cd01169, HMPP_kinase, 4-amino-5-hydroxymethyl-2-methyl-pyrimidine phosphate kinase (HMPP-kinase) catalyzes two consecutive phosphorylation steps in the thiamine phosphate biosynthesis pathway, leading to the synthesis of vitamin B1. The first step is the phosphorylation of the hydroxyl group of HMP to form 4-amino-5-hydroxymethyl-2-methyl-pyrimidine phosphate (HMP-P) and then the phophorylation of HMP-P to form 4-amino-5-hydroxymethyl-2-methyl-pyrimidine pyrophosphate (HMP-PP), which is the substrate for the thiamine synthase coupling reaction.
cd00757, ThiF_MoeB_HesA_family, ThiF_MoeB_HesA. Family of E1-like enzymes involved in molybdopterin and thiamine biosynthesis family. The common reaction mechanism catalyzed by MoeB and ThiF, like other E1 enzymes, begins with a nucleophilic attack of the C-terminal carboxylate of MoaD and ThiS, respectively, on the alpha-phosphate of an ATP molecule bound at the active site of the activating enzymes, leading to the formation of a high-energy acyladenylate intermediate and subsequently to the formation of a thiocarboxylate at the C termini of MoaD and ThiS. MoeB, as the MPT synthase (MoaE/MoaD complex) sulfurase, is involved in the biosynthesis of the molybdenum cofactor, a derivative of the tricyclic pterin, molybdopterin (MPT). ThiF catalyzes the adenylation of ThiS, as part of the biosynthesis pathway of thiamin pyrophosphate (vitamin B1). .
TIGR02352, Glycine_oxidase, glycine oxidase ThiO. This family consists of the homotetrameric, FAD-dependent glycine oxidase ThiO, from species such as Bacillus subtilis that use glycine in thiamine biosynthesis. In general, members of this family will not be found in species such as E. coli that instead use tyrosine and the ThiH protein. [Biosynthesis of cofactors, prosthetic groups, and carriers, Thiamine].
TIGR02977, phage_shock_protein_A, phage shock protein A. Members of this family are the phage shock protein PspA, from the phage shock operon. This is a narrower family than the set of PspA and its homologs, sometimes several in a genome, as described by pfam04012. PspA appears to maintain the protonmotive force under stress conditions that include overexpression of certain phage secretins, heat shock, ethanol, and protein export defects. [Cellular processes, Adaptations to atypical conditions].
pfam10095, DUF2333, Uncharacterized protein conserved in bacteria (DUF2333). Members of this family of hypothetical bacterial proteins have no known function.
pfam04314, PCuAC, Copper chaperone PCu(A)C. PCu(A)C is a periplasmic copper chaperone. Its role may be to capture and transfer copper to two other copper chaperones, PrrC and Cox11, which in turn deliver Cu(I) to cytochrome c oxidase.
cd01948, EAL, EAL domain. This domain is found in diverse bacterial signaling proteins. It is called EAL after its conserved residues and is also known as domain of unknown function 2 (DUF2). The EAL domain has been shown to stimulate degradation of a second messenger, cyclic di-GMP, and is a good candidate for a diguanylate phosphodiesterase function. Together with the GGDEF domain, EAL might be involved in regulating cell surface adhesiveness in bacteria.
TIGR03570, NeuD_NnaD, sugar O-acyltransferase, sialic acid O-acetyltransferase NeuD family. This family of proteins includes the characterized NeuD sialic acid O-acetyltransferase enzymes from E. coli and Streptococcus agalactiae (group B strep). These two are quite closely related to one another, so extension of this annotation to other members of the family in unsupported without additional independent evidence. The neuD gene is often observed in close proximity to the neuABC genes for the biosynthesis of CMP-N-acetylneuraminic acid (CMP-sialic acid), and NeuD sequences from these organisms were used to construct the seed for this model. Nevertheless, there are numerous instances of sequences identified by this model which are observed in a different genomic context (although almost universally in exopolysaccharide biosynthesis-related loci), as well as in genomes for which the biosynthesis of sialic acid (SA) is undemonstrated. Even in the cases where the association with SA biosynthesis is strong, it is unclear in the literature whether the biological substrate is SA iteself, CMP-SA, or a polymer containing SA. Similarly, it is unclear to what extent the enzyme has a preference for acetylation at the 7, 8 or 9 positions. In the absence of evidence of association with SA, members of this family may be involved with the acetylation of differring sugar substrates, or possibly the delivery of alternative acyl groups. The closest related sequences to this family (and those used to root the phylogenetic tree constructed to create this model) are believed to be succinyltransferases involved in lysine biosynthesis. These proteins contain repeats of the bacterial transferase hexapeptide (pfam00132), although often these do not register above the trusted cutoff.
TIGR02007, 2Fe-2S_ferredoxin, ferredoxin, 2Fe-2S type, ISC system. This family consists of proteobacterial ferredoxins associated with and essential to the ISC system of 2Fe-2S cluster assembly. This family is closely related to (but excludes) eukaryotic (mitochondrial) adrenodoxins, which are ferredoxins involved in electron transfer to P450 cytochromes. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other].
TIGR04181, DegT/DnrJ/EryC1/StrS_aminotransferase, aminotransferase, LLPSF_NHT_00031 family. This clade of aminotransferases is a member of the pfam01041 (DegT/DnrJ/EryC1/StrS) superfamily. The family is named after the instance in Leptospira interrogans serovar Lai, str. 56601, where it is the 31st gene in the 91-gene lipopolysaccharide biosynthesis locus. Members of this family are generally found within a subcluster of seven or more genes including an epimerase/dehydratase, four genes homologous to the elements of the neuraminic (sialic) acid biosynthesis cluster (NeuABCD) and a nucleotidyl transferase. Together it is very likely that these enzymes direct the biosynthesis of a nine-carbon sugar analogous to CMP-neuraminic acid. These seven genes form the core of the cassette, although they are often accompanied by additional genes that may further modify the product sugar.
COG0745, OmpR, Response regulators consisting of a CheY-like receiver domain and a winged-helix DNA-binding domain [Signal transduction mechanisms / Transcription].
cd07103, ALDH_F5_SSADH_GabD, Mitochondrial succinate-semialdehyde dehydrogenase and ALDH family members 5A1 and 5F1-like. Succinate-semialdehyde dehydrogenase, mitochondrial (SSADH, GabD, EC=1.2.1.24) catalyzes the NAD+-dependent oxidation of succinate semialdehyde (SSA) to succinate. This group includes the human aldehyde dehydrogenase family 5 member A1 (ALDH5A1) which is a mitochondrial homotetramer that converts SSA to succinate in the last step of 4-aminobutyric acid (GABA) catabolism. This CD also includes the Arabidopsis SSADH gene product ALDH5F1. Mutations in this gene result in the accumulation of H2O2, suggesting a role in plant defense against the environmental stress of elevated reactive oxygen species.
pfam06629, MipA, MltA-interacting protein MipA. This family consists of several bacterial MltA-interacting protein (MipA) like sequences. As well as interacting with the membrane-bound lytic transglycosylase MltA, MipA is known to bind to PBP1B, a bifunctional murein transglycosylase/transpeptidase. MipA is considered to be a structural protein mediating the assembly of MltA to PBP1B into a complex.
cd04852, Peptidases_S8_3, Peptidase S8 family domain, uncharacterized subfamily 3. This family is a member of the Peptidases S8 or Subtilases serine endo- and exo-peptidase clan. They have an Asp/His/Ser catalytic triad similar to that found in trypsin-like proteases, but do not share their three-dimensional structure and are not homologous to trypsin. The stability of subtilases may be enhanced by calcium, some members have been shown to bind up to 4 ions via binding sites with different affinity. Some members of this clan contain disulfide bonds. These enzymes can be intra- and extracellular, some function at extreme temperatures and pH values.
cd05237, UDP_invert_4-6DH_SDR_e, UDP-Glcnac (UDP-linked N-acetylglucosamine) inverting 4,6-dehydratase, extended (e) SDRs. UDP-Glcnac inverting 4,6-dehydratase was identified in Helicobacter pylori as the hexameric flaA1 gene product (FlaA1). FlaA1 is hexameric, possesses UDP-GlcNAc-inverting 4,6-dehydratase activity, and catalyzes the first step in the creation of a pseudaminic acid derivative in protein glycosylation. Although this subgroup has the NADP-binding motif characteristic of extended SDRs, its members tend to have a Met substituted for the active site Tyr found in most SDR families. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.
TIGR03569, ORF_8_similar_to_NeuB_family, N-acetylneuraminate synthase. This family is a subset of the pfam03102 and is believed to include only authentic NeuB N-acetylneuraminate (sialic acid) synthase enzymes. The majority of the genes identified by this model are observed adjacent to both the NeuA and NeuC genes which together effect the biosynthesis of CMP-N-acetylneuraminate from UDP-N-acetylglucosamine.
0
CP019770.1|QBJ61954.1|510603_511050_-|transposase
gnl|CDD|376616
pfam01797, Y1_Tnp, Transposase IS200 like. Transposases are needed for efficient transposition of the insertion sequence or transposon DNA. This family includes transposases for IS200 from E. coli.
TIGR03568, Polysialic_acid_biosynthesis_protein_P7, UDP-N-acetyl-D-glucosamine 2-epimerase, UDP-hydrolysing. This family of enzymes catalyzes the combined epimerization and UDP-hydrolysis of UDP-N-acetylglucosamine to N-acetylmannosamine. This is in contrast to the related enzyme WecB (TIGR00236) which retains the UDP moiety. NeuC acts in concert with NeuA and NeuB to synthesize CMP-N5-acetyl-neuraminate.