TIGR00237, exodeoxyribonuclease_VII_large_subunit, exodeoxyribonuclease VII, large subunit. This family consist of exodeoxyribonuclease VII, large subunit XseA which catalyses exonucleolytic cleavage in either the 5'->3' or 3'->5' direction to yield 5'-phosphomononucleotides. Exonuclease VII consists of one large subunit and four small subunits. [DNA metabolism, Degradation of DNA].
TIGR01951, nusB, transcription antitermination factor NusB. A transcription antitermination complex active in many bacteria was designated N-utilization substance (Nus) in E. coli because of its interaction with phage lambda protein N. This model represents NusB. Other components are NusA and NusG. NusE is, in fact, ribosomal protein S10. [Transcription, Transcription factors].
smart00904, Flavokinase, Riboflavin kinase. Riboflavin is converted into catalytically active cofactors (FAD and FMN) by the actions of riboflavin kinase, which converts it into FMN, and FAD synthetase, which adenylates FMN to FAD. Eukaryotes usually have two separate enzymes, while most prokaryotes have a single bifunctional protein that can carry out both catalyses, although exceptions occur in both cases. While eukaryotic monofunctional riboflavin kinase is orthologous to the bifunctional prokaryotic enzyme. the monofunctional FAD synthetase differs from its prokaryotic counterpart, and is instead related to the PAPS-reductase family. The bacterial FAD synthetase that is part of the bifunctional enzyme has remote similarity to nucleotidyl transferases and, hence, it may be involved in the adenylylation reaction of FAD synthetases. This entry represents riboflavin kinase, which occurs as part of a bifunctional enzyme or a stand-alone enzyme.
2.89707e-39
LS483505.1|SRX62575.1|127857_130347_-|lipoprotein
gnl|CDD|223496
COG0419, SbcC, ATPase involved in DNA repair [DNA replication, recombination, and repair].
TIGR01280, xseB, exodeoxyribonuclease VII, small subunit. This protein is the small subunit for exodeoxyribonuclease VII. Exodeoxyribonuclease VII is made of a complex of four small subunits to one large subunit. The complex degrades single-stranded DNA into large acid-insoluble oligonucleotides. These nucleotides are then degraded further into acid-soluble oligonucleotides. [DNA metabolism, Degradation of DNA].
cd02022, DPCK, Dephospho-coenzyme A kinase (DPCK, EC 2.7.1.24) catalyzes the phosphorylation of dephosphocoenzyme A (dCoA) to yield CoA, which is the final step in CoA biosynthesis.
cd11338, AmyAc_CMD, Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
0
LS483505.1|SRX62660.1|239020_240820_+|lipoprotein
gnl|CDD|270303
cd13585, PBP2_TMBP_like, The periplasmic-binding component of ABC transport systems specific for trehalose/maltose and similar oligosaccharides; possess type 2 periplasmic binding fold. This family includes the periplasmic trehalose/maltose-binding component of an ABC transport system and related proteins from archaea and bacteria. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis.
0.00464598
LS483505.1|SRX62661.1|241114_242905_+|lipoprotein
gnl|CDD|270450
cd14747, PBP2_MalE, Maltose-binding protein MalE; possesses type 2 periplasmic binding fold. This group includes the periplasmic maltose-binding component of an ABC transport system from the phytopathogen Xanthomonas citri and its related bacterial proteins. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 proteins are comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis.
0.00253297
LS483505.1|SRX62650.1|223170_226272_+|lipoprotein
gnl|CDD|173869
cd08504, PBP2_OppA, The substrate-binding component of an ABC-type oligopetide import system contains the type 2 periplasmic binding fold. This family represents the periplasmic substrate-binding component of an ATP-binding cassette (ABC)-type oligopeptide transport system comprised of 5 subunits. The transport system OppABCDEF contains two homologous integral membrane proteins OppB and OppF that form the translocation pore; two homologous nucleotide-binding domains OppD and OppF that drive the transport process through binding and hydrolysis of ATP; and the substrate-binding protein or receptor OppA that determines the substrate specificity of the transport system. The dipeptide (DppA) and oligopeptide (OppA) binding proteins differ in several ways. The DppA binds dipeptides and some tripeptides and is involved in chemotaxis toward dipeptides, whereas the OppA binds peptides of a wide range of lengths (2-35 amino acid residues) and plays a role in recycling of cell wall peptides, which precludes any involvement in chemotaxis. Most of other periplasmic binding proteins are comprised of only two globular subdomains corresponding to domains I and III of the dipeptide/oligopeptide binding proteins. The structural topology of these domains is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the ligand-binding domains from ionotropic glutamate receptors, LysR-type transcriptional regulators, and unorthodox sensor proteins involved in signal transduction.
COG1173, DppC, ABC-type dipeptide/oligopeptide/nickel transport systems, permease components [Amino acid transport and metabolism / Inorganic ion transport and metabolism].
5.06323e-47
LS483505.1|SRX62651.1|226689_227985_-|ATPase
gnl|CDD|224292
COG1373, COG1373, Predicted ATPase (AAA+ superfamily) [General function prediction only].
TIGR03490, Uncharacterized_lipoprotein_lpp, mycoides cluster lipoprotein, LppA/P72 family. Members of this protein family occur in Mycoplasma mycoides, Mycoplasma hyopneumoniae, and related Mycoplasmas in small paralogous families that may also include truncated forms and/or pseudogenes. Members are predicted lipoproteins with a conserved signal peptidase II processing and lipid attachment site. Note that the name for certain characterized members, p72, reflects an anomalous apparent molecular weight, given a theoretical MW of about 61 kDa.
TIGR03490, Uncharacterized_lipoprotein_lpp, mycoides cluster lipoprotein, LppA/P72 family. Members of this protein family occur in Mycoplasma mycoides, Mycoplasma hyopneumoniae, and related Mycoplasmas in small paralogous families that may also include truncated forms and/or pseudogenes. Members are predicted lipoproteins with a conserved signal peptidase II processing and lipid attachment site. Note that the name for certain characterized members, p72, reflects an anomalous apparent molecular weight, given a theoretical MW of about 61 kDa.
cd11338, AmyAc_CMD, Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
COG0444, DppD, ABC-type dipeptide/oligopeptide/nickel transport system, ATPase component [Amino acid transport and metabolism / Inorganic ion transport and metabolism].
cd07516, HAD_Pase, phosphatase, similar to Escherichia coli Cof and Thermotoga maritima TM0651; belongs to the haloacid dehalogenase-like superfamily. Escherichia coli Cof is involved in the hydrolysis of HMP-PP (4-amino-2-methyl-5-hydroxymethylpyrimidine pyrophosphate, an intermediate in thiamin biosynthesis), Cof also has phosphatase activity against the coenzymes pyridoxal phosphate (PLP) and FMN. Thermotoga maritima TM0651 acts as a phosphatase with a phosphorylated carbohydrate molecule as a possible substrate. Escherichia coli YbhA is also a member of this family and catalyzes the dephosphorylation of PLP, YbhA can also hydrolyze erythrose-4-phosphate and fructose-1,6-bis-phosphate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases.
TIGR01990, bPGM, beta-phosphoglucomutase. This model represents the beta-phosphoglucomutase enzyme which catalyzes the interconverison of beta-D-glucose-1-phosphate and beta-D-glucose-6-phosphate. The 6-phosphate is capable of non-enzymatic anomerization (alpha <-> beta) while the 1-phosphate is not. A separate enzyme is responsible for the isomerization of the alpha anomers. Beta-D-glucose-1-phosphate results from the phosphorylysis of maltose (2.4.1.8), trehalose (2.4.1.64) or trehalose-6-phosphate (2.4.1.216). Alternatively, these reactions can be run in the synthetic direction to create the disaccharides. All sequenced genomes which contain a member of this family also appear to contain at least one putative maltose or trehalose phosphorylase. Three species, Lactococcus, Enterococcus and Neisseria appear to contain a pair of paralogous beta-PGM's. Beta-phosphoglucomutase is a member of the haloacid dehalogenase superfamily of hydrolase enzymes. These enzymes are characterized by a series of three catalytic motifs positioned within an alpha-beta (Rossman) fold. beta-PGM contains an inserted alpha helical domain in between the first and second conserved motifs and thus is a member of subfamily IA of the superfamily. The third catalytic motif comes in three variants, the third of which, containing a conserved DD or ED, is the only one found here as well as in several other related enzymes (TIGR01509). The enzyme from L. lactis has been extensively characterized including a remarkable crystal structure which traps the pentacoordinate transition state. [Energy metabolism, Biosynthesis and degradation of polysaccharides].
cd07516, HAD_Pase, phosphatase, similar to Escherichia coli Cof and Thermotoga maritima TM0651; belongs to the haloacid dehalogenase-like superfamily. Escherichia coli Cof is involved in the hydrolysis of HMP-PP (4-amino-2-methyl-5-hydroxymethylpyrimidine pyrophosphate, an intermediate in thiamin biosynthesis), Cof also has phosphatase activity against the coenzymes pyridoxal phosphate (PLP) and FMN. Thermotoga maritima TM0651 acts as a phosphatase with a phosphorylated carbohydrate molecule as a possible substrate. Escherichia coli YbhA is also a member of this family and catalyzes the dephosphorylation of PLP, YbhA can also hydrolyze erythrose-4-phosphate and fructose-1,6-bis-phosphate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases.
COG0601, DppB, ABC-type dipeptide/oligopeptide/nickel transport systems, permease components [Amino acid transport and metabolism / Inorganic ion transport and metabolism].
pfam02417, Chromate_transp, Chromate transporter. Members of this family probably act as chromate transporters. Members of this family are found in both bacteria and archaebacteria. The proteins are composed of one or two copies of this region. The alignment contains two conserved motifs, FGG and PGP.
cd13663, PBP2_PotD_PotF_like_2, The periplasmic substrate-binding component of an uncharacterized active transport system closely related to spermidine and putrescine transporters; contains the type 2 periplasmic binding fold. This group represents the periplasmic substrate-binding domain that serves as a primary polyamine receptor of an uncharacterized ABC-type transport system from gram-negative bacteria. Polyamine transport plays an essential role in the regulation of intracellular polyamine levels which are known to be elevated in rapidly proliferating cells and tumors. Natural polyamines are putrescine, spermindine, and spermine. They are polycations that play multiple roles in cell growth, survival and proliferation, as well as plant stress and disease resistance. They can interact with negatively charged molecules, such as nucleic acids, to modulate their functions. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap.
cd11333, AmyAc_SI_OligoGlu_DGase, Alpha amylase catalytic domain found in Sucrose isomerases, oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), dextran glucosidase (also called glucan 1,6-alpha-glucosidase), and related proteins. The sucrose isomerases (SIs) Isomaltulose synthase (EC 5.4.99.11) and Trehalose synthase (EC 5.4.99.16) catalyze the isomerization of sucrose and maltose to produce isomaltulose and trehalulose, respectively. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Dextran glucosidase (DGase, EC 3.2.1.70) hydrolyzes alpha-1,6-glucosidic linkages at the non-reducing end of panose, isomaltooligosaccharides and dextran to produce alpha-glucose.The common reaction chemistry of the alpha-amylase family enzymes is based on a two-step acid catalytic mechanism that requires two critical carboxylates: one acting as a general acid/base (Glu) and the other as a nucleophile (Asp). Both hydrolysis and transglycosylation proceed via the nucleophilic substitution reaction between the anomeric carbon, C1 and a nucleophile. Both enzymes contain the three catalytic residues (Asp, Glu and Asp) common to the alpha-amylase family as well as two histidine residues which are predicted to be critical to binding the glucose residue adjacent to the scissile bond in the substrates. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
pfam07751, Abi_2, Abi-like protein. This family, found in various bacterial species, contains sequences that are similar to the Abi group of proteins, which are involved in bacteriophage resistance mediated by abortive infection in Lactococcus species. The proteins are thought to have helix-turn-helix motifs, found in many DNA-binding proteins, allowing them to perform their function.
TIGR00181, Oligoendopeptidase_F_homolog, oligoendopeptidase F. This family represents the oligoendopeptidase F clade of the family of larger M3 or thimet (for thiol-dependent metallopeptidase) oligopeptidase family. Lactococcus lactis PepF hydrolyzed peptides of 7 and 17 amino acids with fairly broad specificity. The homolog of lactococcal PepF in group B Streptococcus was named PepB (, with the name difference reflecting a difference in species of origin rather activity; substrate profiles were quite similar. Differences in substrate specificity should be expected in other species. The gene is duplicated in Lactococcus lactis on the plasmid that bears it. A shortened second copy is found in Bacillus subtilis. [Protein fate, Degradation of proteins, peptides, and glycopeptides].
cd03300, ABC_PotA_N, ATP-binding cassette domain of the polyamine transporter. PotA is an ABC-type transporter and the ATPase component of the spermidine/putrescine-preferential uptake system consisting of PotA, -B, -C, and -D. PotA has two domains with the N-terminal domain containing the ATPase activity and the residues required for homodimerization with PotA and heterdimerization with PotB. ABC transporters are a large family of proteins involved in the transport of a wide variety of different compounds, like sugars, ions, peptides, and more complex organic molecules. The nucleotide binding domain shows the highest similarity between all members of the family. ABC transporters are a subset of nucleotide hydrolases that contain a signature motif, Q-loop, and H-loop/switch region, in addition to, the Walker A motif/P-loop and Walker B motif commonly found in a number of ATP- and GTP-binding and hydrolyzing proteins.
cd17495, RMtype1_S_Cep9333ORF4827P-TRD2-CR2_like, Type I restriction-modification system specificity (S) subunit Target Recognition Domain-ConseRved domain (TRD-CR), similar to Crinalium epipsammum S subunit (S.Cep9333ORF4827P) TRD2-CR2 and Corynebacterium genitalium sp. nov. S subunit (S.CgeORF10704P) TRD2-CR2. The recognition sequences for Crinalium epipsammum S subunit (S.Cep9333ORF4827P) and Corynebacterium genitalium sp. nov. S subunit (S.CgeORF10704P) are undetermined. The restriction-modification (RM) system S subunit consists of two variable target recognition domains (TRD1 and 2) and two conserved regions (CR1 and CR2) which separate the TRDs. The TRDs each bind to different specific sequences in the DNA. RM systems protect a bacterial cell against invasion of foreign DNA by endonucleolytic cleavage of DNA that lacks a site specific modification. The host genome is protected from cleavage by methylation of specific nucleotides in the target sites. In type I systems, both restriction and modification activities are present in one enzyme complex composed of one DNA specificity (S) subunit (this family), two modification (M) subunits and two restriction (R) subunits. This model contains both TRD1-CR1 and TRD2-CR2. This subfamily of TRD-CR's shows similarity to TRD1-CR1 of Aminobacterium colombiense DSM 12261 S subunit (S.Aco12261I), which recognizes 5'... GCANNNNNNTGT ... 3'. This subfamily may also include TRD-CR-like sequence-recognition domains of various type II restriction enzymes and methyltransferases and type I DNA methyltransferases.
pfam00883, Peptidase_M17, Cytosol aminopeptidase family, catalytic domain. The two associated zinc ions and the active site are entirely enclosed within the C-terminal catalytic domain in leucine aminopeptidase.
The bacterium proteins that are colored denote the protein is present at specific phage-related keywords (such as 'capsid', 'head', 'integrase', 'plate', 'tail', 'fiber', 'coat', 'transposase', 'portal', 'terminase', 'protease' or 'lysin' and 'tRNA')