TIGR02785, ATP-dependent_helicase/nuclease_subunit_A, helicase-exonuclease AddAB, AddA subunit, Firmicutes type. AddAB, also called RexAB, substitutes for RecBCD in several bacterial lineages. These DNA recombination proteins act before synapse and are particularly important for DNA repair of double-stranded breaks by homologous recombination. The term AddAB is used broadly, with AddA homologous between the Firmicutes (as modeled here) and the alphaproteobacteria, while the partner AddB proteins show no strong homology across the two groups of species. [DNA metabolism, DNA replication, recombination, and repair].
pfam05107, Cas_Cas7, CRISPR-associated protein Cas7. CRISPR-associated protein Cas7 is one of the components of the type I-B cascade-like antiviral defense complex. In Haloferax volcanii, Cas5, Cas6 and Cas7 form a small complex that aids the stability of CRISPR-derived RNA.
cd09637, Cas4_I-A_I-B_I-C_I-D_II-B, CRISPR/Cas system-associated protein Cas4. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas4 is RecB-like nuclease with three-cysteine C-terminal cluster.
cd09752, Cas5_I-C, CRISPR/Cas system-associated RAMP superfamily protein Cas5. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas5 is a RAMP superfamily protein; Subunit of the Cascade complex; in subtype I-C this protein might be the endoribonuclease that generates crRNAs; also known as DevS family.
cd09725, Cas2_I_II_III, CRISPR/Cas system-associated protein Cas2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas2 is present in majority of CRISPR/Cas systems along with Cas1; RNAse specific to U-rich regions; Possesses an RRM/ferredoxin fold.
TIGR03640, cas1_DVULG, CRISPR-associated endonuclease Cas1, subtype I-C/DVULG. The CRISPR-associated protein Cas1 is virtually universal to CRISPR systems. CRISPR, an acronym for Clustered Regularly Interspaced Short Palindromic Repeats, is prokaryotic immunity system for foreign DNA, mostly from phage. CRISPR systems belong to different subtypes, distinguished by both nature of the repeats, the makeup of the cohort of associated Cas proteins, and by molecular phylogeny within the more universal Cas proteins such as this one. This model is of type EXCEPTION and provides more specific information than the EQUIVALOG model TIGR00287. It describes the Cas1 protein particular to the DVULG subtype of CRISPR/Cas system.
pfam13280, WYL, WYL domain. WYL is a Sm-like SH3 beta-barrel fold containing domain. It is a member of the WYL-like superfamily, named for three conserved amino acids found in a subset of the superfamily. However, these residues are not strongly conserved throughout the family. Rather, the conservation pattern includes four basic residues and a position often occupied by a cysteine, which are predicted to line a ligand-binding groove typical of the Sm-like SH3 beta-barrels. A WYL domain protein (sll7009) is a negative regulator of the I-D CRISPR-Cas system in Synechocystis sp. It is predicted to be a ligand-sensing domain that could bind negatively charged ligands, such as nucleotides or nucleic acid fragments, to regulate CRISPR-Cas and other defense systems such as the abortive infection AbiG system.
pfam06114, Peptidase_M78, IrrE N-terminal-like domain. This entry includes the catalytic domain of the protein ImmA, which is a metallopeptidase containing an HEXXH zinc-binding motif from peptidase family M78. ImmA is encoded on a conjugative transposon. Conjugating bacteria are able to transfer conjugative transposons that can, for example, confer resistance to antibiotics. The transposon is integrated into the chromosome, but during conjugation excises itself and then moves to the recipient bacterium and re-integrate into its chromosome. Typically a conjugative tranposon encodes only the proteins required for this activity and the proteins that regulate it. During exponential growth, the ICEBs1 transposon of Bacillus subtilis is inactivated by the immunity repressor protein ImmR, which is encoded by the transposon and represses the genes for excision and transfer. Cleavage of ImmR relaxes repression and allows transfer of the transposon. ImmA has been shown to be essential for the cleavage of ImmR. This domain is also found in in metalloprotease IrrE, a central regulator of DNA damage repair in Deinococcaceae, HTH-type transcriptional regulators RamB and PrpC.
cd09757, Cas8c_I-C, CRISPR/Cas system-associated protein Cas8c. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Zn-finger domain containing protein, distant homologs of Cas8 proteins; signature gene for I-C subtype; also known as Csd1 family.
cd17930, DEXHc_cas3, DEXH/Q-box helicase domain of Cas3. CRISPR-associated (Cas) 3 is a nuclease-helicase responsible for degradation of dsDNA. The two enzymatic units of Cas3, a histidine-aspartate (HD) nuclease and a Superfamily 2 (SF2) helicase, may be expressed from separate genes as Cas3' (SF2 helicase) and Cas3'' (HD nuclease) or may be fused as a single HD-SF2 polypeptide. The nucleolytic activity of most Cas3 enzymes is transition metal ion-dependent. Cas3 is a member of the DEAD-like helicase superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. This domain contains the ATP-binding region.
TIGR02773, ATP-dependent_helicase/deoxyribonuclease_subunit_B, helicase-exonuclease AddAB, AddB subunit. DNA repair is accomplished by several different systems in prokaryotes. Recombinational repair of double-stranded DNA breaks involves the RecBCD pathway in some lineages, and AddAB (also called RexAB) in other. The AddA protein is conserved between the firmicutes and the alphaproteobacteria, while the partner protein is not. Nevertheless, the partner is designated AddB in both systems. This model describes the AddB protein as found Bacillus subtilis and related species. Although the RexB protein of Streptococcus and Lactococcus is considered to be orthologous, functionally equivalent, and merely named differently, all members of this protein family have a P-loop nucleotide binding motif GxxGxGK[ST] at the N-terminus, unlike RexB proteins, and a CxxCxxxxxC motif at the C-terminus, both of which may be relevant to function. [DNA metabolism, DNA replication, recombination, and repair].
cd06061, PurM-like1, AIR synthase (PurM) related protein, subgroup 1 of unknown function. The family of PurM related proteins includes Hydrogen expression/formation protein HypE, AIR synthases, FGAM synthase and Selenophosphate synthetase (SelD). They all contain two conserved domains and seem to dimerize. The N-terminal domain forms the dimer interface and is a putative ATP binding domain.
pfam04294, VanW, VanW like protein. Family members include vancomycin resistance protein W (VanW). Genes encoding members of this family have been found in vancomycin resistance gene clusters vanB and vanG. The function of VanW is unknown.
cd18738, PIN_VapC4-5_FitB-like, uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons.
cd18738, PIN_VapC4-5_FitB-like, uncharacterized subgroup of the PIN_VapC4-5_FitB-like subfamily of the PIN domain superfamily. The PIN_VapC4-5_FitB-like subfamily includes the Virulence associated protein C (VapC)-like PIN (PilT N terminus) domain of Mycobacterium tuberculosis VapC4 and VapC5 ribonuclease toxins of the VapBC toxin/antitoxin (TA) system, and Neisseria gonorrhoeae FitB toxin of the FitAB TA system. This subfamily belongs to the VapC-like family of the PIN domain nuclease superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1. The structural properties of the PIN (PilT N terminus) domain indicate its active center, consisting of three highly conserved catalytic residues which coordinate metal ions, in some members, additional metal coordinating residues can be found. Some members of the superfamily lack several of these key catalytic residues. The PIN active site is geometrically similar in the active center of structure-specific 5' nucleases, PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons.
smart00966, SpoVT_AbrB, SpoVT / AbrB like domain. This domain is found in AbrB from Bacillus subtilis. The product of the abrB gene is an ambiactive repressor and activator of the transcription of genes expressed during the transition state between vegetative growth and the onset of stationary phase and sporulation. AbrB is thought to interact directly with the transcription initiation regions of genes under its control. AbrB contains a helix-turn-helix structure, but this domain ends before the helix-turn-helix begins. The product of the B. subtilis gene spoVT is another member of this family and is also a transcriptional regulator. DNA-binding activity in this AbrB homologue requires hexamerisation. Another family member has been isolated from the Sulfolobus solfataricus and has been identified as a homologue of bacterial repressor-like proteins. The Escherichia coli family member SohA or Prl1F appears to be bifunctional and is able to regulate its own expression as well as relieve the export block imposed by high-level synthesis of beta-galactosidase hybrid proteins.
cd01536, PBP1_ABC_sugar_binding-like, periplasmic sugar-binding domain of active transport systems that are members of the type 1 periplasmic binding protein (PBP1) superfamily. Periplasmic sugar-binding domain of active transport systems that are members of the type 1 periplasmic binding protein (PBP1) superfamily. The members of this family function as the primary receptors for chemotaxis and transport of many sugar based solutes in bacteria and archaea. The sugar binding domain is also homologous to the ligand-binding domain of eukaryotic receptors such as glutamate receptor (GluR) and DNA-binding transcriptional repressors such as LacI and GalR. Moreover, this periplasmic binding domain, also known as Venus flytrap domain, undergoes transition from an open to a closed conformational state upon the binding of ligands such as lactose, ribose, fructose, xylose, arabinose, galactose/glucose, and other sugars. This family also includes the periplasmic binding domain of autoinducer-2 (AI-2) receptors such as LsrB and LuxP which are highly homologous to periplasmic pentose/hexose sugar-binding proteins.
cd06579, TM_PBP1_transp_AraH_like, Transmembrane subunit (TM) of Escherichia coli AraH and related proteins. E. coli AraH is the TM of a Periplasmic Binding Protein (PBP)-dependent ATP-Binding Cassette (ABC) transporter involved in the uptake of the monosaccharide arabinose. This group also contains E. coli RbsC, AlsC, and MglC, which are TMs of other monosaccharide transporters, the ribose transporter, the D-allose transporter and the galactose transporter, respectively. The D-allose transporter may also be involved in low affinity ribose transport. These transporters generally bind type 1 PBPs. PBP-dependent ABC transporters consist of a PBP, two TMs, and two cytoplasmic ABCs, and are mainly involved in importing solutes from the environment. The solute is captured by the PBP, which delivers it to a gated translocation pathway formed by the two TMs. The two ABCs bind and hydrolyze ATP and drive the transport reaction. Proteins in this subgroup have a single TM which homodimerizes to generate the transmembrane pore.
cd18680, PIN_MtVapC20-like, VapC-like PIN domain of Mycobacterium tuberculosis VapC20 and related proteins. M. tuberculosis VapC20 inhibits translation by site-specific cleavage of the universally conserved Sarcin-Ricin loop in 23S rRNA. This subfamily belongs to the VapC (virulence-associated protein C)-like nuclease family of the PIN domain-like superfamily. VapC is the PIN-domain ribonuclease toxin from prokaryotic VapBC toxin-antitoxin (TA) systems. VapB is a transcription factor-like protein antitoxin acting as an inhibitor. Other members of the VapC-like nuclease family include FitB toxin of the FitAB TA system, eukaryotic ribonucleases such as Smg6, ribosome assembly factor NOB1, exosome subunit Rrp44 endoribonuclease and rRNA-processing protein Fcf1.
smart00966, SpoVT_AbrB, SpoVT / AbrB like domain. This domain is found in AbrB from Bacillus subtilis. The product of the abrB gene is an ambiactive repressor and activator of the transcription of genes expressed during the transition state between vegetative growth and the onset of stationary phase and sporulation. AbrB is thought to interact directly with the transcription initiation regions of genes under its control. AbrB contains a helix-turn-helix structure, but this domain ends before the helix-turn-helix begins. The product of the B. subtilis gene spoVT is another member of this family and is also a transcriptional regulator. DNA-binding activity in this AbrB homologue requires hexamerisation. Another family member has been isolated from the Sulfolobus solfataricus and has been identified as a homologue of bacterial repressor-like proteins. The Escherichia coli family member SohA or Prl1F appears to be bifunctional and is able to regulate its own expression as well as relieve the export block imposed by high-level synthesis of beta-galactosidase hybrid proteins.
pfam00072, Response_reg, Response regulator receiver domain. This domain receives the signal from the sensor partner in bacterial two-component systems. It is usually found N-terminal to a DNA binding effector domain.
cd09652, Cas6-I-III, CRISPR/Cas system-associated RAMP superfamily protein Cas6. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas6 is an endoribonuclease that generates crRNAs, predicted subunit of Cascade complex; RAMP superfamily protein; Possesses double RRM/ferredoxin fold.
TIGR02512, Periplasmic_hydrogenase_large_subunit, [FeFe] hydrogenase, group A. This model describes iron-only hydrogenases of anaerobic and microaerophilic bacteria and protozoa. This model is narrower, and covers a longer stretch of sequence, than pfam02906. This family represents a division among families that belong to pfam02906, which also includes proteins such as nuclear prelamin A recognition factor in animals. Note that this family shows some heterogeneity in terms of periplasmic, cytosolic, or hydrogenosome location, NAD or NADP dependence, and overal protein protein length.
cd09725, Cas2_I_II_III, CRISPR/Cas system-associated protein Cas2. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas2 is present in majority of CRISPR/Cas systems along with Cas1; RNAse specific to U-rich regions; Possesses an RRM/ferredoxin fold.
cd09722, Cas1_I-B, CRISPR/Cas system-associated protein Cas1. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and associated Cas proteins comprise a system for heritable host defense by prokaryotic cells against phage and other foreign DNA; Cas1 is the most universal CRISPR system protein thought to be involved in spacer integration; Cas1 is metal-dependent deoxyribonuclease, also binds RNA; Shown to possess a unique fold consisting of a N-terminal beta-strand domain and a C-terminal alpha-helical domain.
pfam01905, DevR, CRISPR-associated negative auto-regulator DevR/Csa2. This group of families is one of several protein families that are always found associated with prokaryotic CRISPRs, themselves a family of clustered regularly interspaced short palindromic repeats, DNA repeats found in nearly half of all bacterial and archaeal genomes. These DNA repeat regions have a remarkably regular structure: unique sequences of constant size, called spacers, sit between each pair of repeats. It has been shown that the CRISPRs are virus-derived sequences acquired by the host to enable them to resist viral infection. The Cas proteins from the host use the CRISPRs to mediate an antiviral response. After transcription of the CRISPR, a complex of Cas proteins termed Cascade cleaves a CRISPR RNA precursor in each repeat and retains the cleavage products containing the virus-derived sequence. Assisted by the helicase Cas3, these mature CRISPR RNAs then serve as small guide RNAs that enable Cascade to interfere with virus proliferation. Cas5 contains an endonuclease motif, whose inactivation leads to loss of resistance, even in the presence of phage-derived spacers. This family used to be known as DUF73. DevR appears to be negative auto-regulator within the system.
TIGR01908, Uncharacterized_protein_aq_372, CRISPR-associated protein Cas8b1/Cst1, subtype I-B/TNEAP. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This (revised) model describes a conserved region from an otherwise highly divergent protein found in the Tneap subtype of CRISPR/Cas regions. This Cys-rich region features two motifs of CXXC.
pfam02277, DBI_PRT, Phosphoribosyltransferase. This family of proteins represent the nicotinate-nucleotide- dimethylbenzimidazole phosphoribosyltransferase (NN:DBI PRT) enzymes involved in dimethylbenzimidazole synthesis. This function is essential to de novo cobalamin (vitamin B12) production in bacteria. Nicotinate mononucleotide (NaMN):5,6-dimethylbenzimidazole (DMB) phosphoribosyltransferase (CobT) from Salmonella enterica plays a central role in the synthesis of alpha-ribazole-5'-phosphate, an intermediate for the lower ligand of cobalamin.
TIGR01895, conserved_hypothetical_protein, CRISPR-associated protein Cas5, subtype I-B/TNEAP. CRISPR is a term for Clustered Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR associated) proteins. This family is represented by TM1800 from Thermotoga maritima. It is related to TIGR01868 (CRISPR-associated protein, CT1976 family).
pfam01930, Cas_Cas4, Domain of unknown function DUF83. This domain has no known function. The domain contains three conserved cysteines at its C-terminus.
cd01126, TraG_VirD4, The TraG/TraD/VirD4 family are bacterial conjugation proteins involved in type IV secretion. These proteins aid the transfer of DNA from the plasmid into the host bacterial chromosome. They contain an ATP binding domain. VirD4 is involved in DNA transfer to plant cells and is required for virulence.
The bacterium proteins that are colored denote the protein is present at specific phage-related keywords (such as 'capsid', 'head', 'integrase', 'plate', 'tail', 'fiber', 'coat', 'transposase', 'portal', 'terminase', 'protease' or 'lysin' and 'tRNA')