TIGR01207, Glucose-1-phosphate_thymidylyltransferase_1, glucose-1-phosphate thymidylyltransferase, short form. Alternate name: dTDP-D-glucose synthase homotetramer This model describes a tightly conserved but broadly distributed subfamily (here designated as short form) of known and putative bacterial glucose-1-phosphate thymidylyltransferases. It is well characterized in several species as the first of four enzymes involved in the biosynthesis of dTDP-L-rhamnose, a cell wall constituent and a feedback inhibitor of the enzyme. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides].
cd14014, STKc_PknB_like, Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes many bacterial eukaryotic-type STKs including Staphylococcus aureus PknB (also called PrkC or Stk1), Bacillus subtilis PrkC, and Mycobacterium tuberculosis Pkn proteins (PknB, PknD, PknE, PknF, PknL, and PknH), among others. S. aureus PknB is the only eukaryotic-type STK present in this species, although many microorganisms encode for several such proteins. It is important for the survival and pathogenesis of S. aureus as it is involved in the regulation of purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, virulence, and antibiotic resistance. M. tuberculosis PknB is essential for growth and it acts on diverse substrates including proteins involved in peptidoglycan synthesis, cell division, transcription, stress responses, and metabolic regulation. B. subtilis PrkC is located at the inner membrane of endospores and functions to trigger spore germination. Bacterial STKs in this subfamily show varied domain architectures. The well-characterized members such as S. aureus and M. tuberculosis PknB, and B. subtilis PrkC, contain an N-terminal cytosolic kinase domain, a transmembrane (TM) segment, and mutliple C-terminal extracellular PASTA domains. The PknB subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.
pfam14032, PknH_C, PknH-like extracellular domain. This domain is functionally uncharacterized. It is found as the periplasmic domain of the bacterial protein kinase PknH. The domain is also found in isolation in numerous proteins, for example the lipoproteins lpqQ, lprH, lppH and lpqA from M. tuberculosis. This family of proteins is found in bacteria. Proteins in this family are typically between 214 and 268 amino acids in length. There are two completely conserved C residues that are likely to form a disulphide bond. A second pair of cysteines are less well conserved probably form a second disulphide bond. It seems likely that this domain functions to bind some as yet unknown ligand.
pfam00881, Nitroreductase, Nitroreductase family. The nitroreductase family comprises a group of FMN- or FAD-dependent and NAD(P)H-dependent enzymes able to metabolize nitrosubstituted compounds.
pfam14032, PknH_C, PknH-like extracellular domain. This domain is functionally uncharacterized. It is found as the periplasmic domain of the bacterial protein kinase PknH. The domain is also found in isolation in numerous proteins, for example the lipoproteins lpqQ, lprH, lppH and lpqA from M. tuberculosis. This family of proteins is found in bacteria. Proteins in this family are typically between 214 and 268 amino acids in length. There are two completely conserved C residues that are likely to form a disulphide bond. A second pair of cysteines are less well conserved probably form a second disulphide bond. It seems likely that this domain functions to bind some as yet unknown ligand.
pfam10756, bPH_6, Bacterial PH domain. This domain has a bacterial type PH domain structure. This domain was previously known as DUF2581. This family is conserved in the Actinomycetales. Although several members are annotated as RbiX homologs, RbiX being a putative regulator of riboflavin biosynthesis, the function could not be confirmed.
cd14014, STKc_PknB_like, Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes many bacterial eukaryotic-type STKs including Staphylococcus aureus PknB (also called PrkC or Stk1), Bacillus subtilis PrkC, and Mycobacterium tuberculosis Pkn proteins (PknB, PknD, PknE, PknF, PknL, and PknH), among others. S. aureus PknB is the only eukaryotic-type STK present in this species, although many microorganisms encode for several such proteins. It is important for the survival and pathogenesis of S. aureus as it is involved in the regulation of purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, virulence, and antibiotic resistance. M. tuberculosis PknB is essential for growth and it acts on diverse substrates including proteins involved in peptidoglycan synthesis, cell division, transcription, stress responses, and metabolic regulation. B. subtilis PrkC is located at the inner membrane of endospores and functions to trigger spore germination. Bacterial STKs in this subfamily show varied domain architectures. The well-characterized members such as S. aureus and M. tuberculosis PknB, and B. subtilis PrkC, contain an N-terminal cytosolic kinase domain, a transmembrane (TM) segment, and mutliple C-terminal extracellular PASTA domains. The PknB subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.
TIGR03618, Rv1155_F420, PPOX class probable F420-dependent enzyme. A Genome Properties metabolic reconstruction for F420 biosynthesis shows that slightly over 10 percent of all prokaryotes with fully sequenced genomes, including about two thirds of the Actinomyces, make F420. The Partial Phylogenetic Profiling algorithm identifies this members of this protein family as high-scoring proteins to the F420 biosynthesis profile. A member of this family, Rv1155, was crytallized after expression in Escherichia coli, which does not synthesize F420; the crystal structure shown to resemble FMN-binding proteins, but with a recognizable empty cleft corresponding to, yet differing profounding from, the FMN site of pyridoxine 5'-phosphate oxidase. We propose that this protein family consists of F420-binding enzymes. [Unknown function, Enzymes of unknown specificity].
cd07363, 45_DOPA_Dioxygenase, The Class III extradiol dioxygenase, 4,5-DOPA Dioxygenase, catalyzes the incorporation of both atoms of molecular oxygen into 4,5-dihydroxy-phenylalanine. This subfamily is composed of plant 4,5-DOPA Dioxygenase, the uncharacterized Escherichia coli protein Jw3007, and similar proteins. 4,5-DOPA Dioxygenase catalyzes the incorporation of both atoms of molecular oxygen into 4,5-dihydroxy-phenylalanine (4,5-DOPA). The reaction results in the opening of the cyclic ring between carbons 4 and 5 and producing an unstable seco-DOPA that rearranges to betalamic acid. 4,5-DOPA Dioxygenase is a key enzyme in the biosynthetic pathway of the plant pigment betalain. Homologs of DODA are present not only in betalain-producing plants but also in bacteria and archaea. This enzyme is a member of the class III extradiol dioxygenase family, a group of enzymes which use a non-heme Fe(II) to cleave aromatic rings between a hydroxylated carbon and an adjacent non-hydroxylated carbon.
The bacterium proteins that are colored denote the protein is present at specific phage-related keywords (such as 'capsid', 'head', 'integrase', 'plate', 'tail', 'fiber', 'coat', 'transposase', 'portal', 'terminase', 'protease' or 'lysin' and 'tRNA')