pfam13622, 4HBT_3, Thioesterase-like superfamily. This family contains a wide variety of enzymes, principally thioesterases. These enzymes are part of the Hotdog fold superfamily.
cd07818, SRPBCC_1, Ligand-binding SRPBCC domain of an uncharacterized subfamily of proteins. Uncharacterized group of the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily. SRPBCC domains have a deep hydrophobic ligand-binding pocket and they bind diverse ligands. SRPBCC domains include the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), Class I and II phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of the superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins.
cd17325, MFS_MdtG_SLC18_like, bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters. This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
cd03801, GT4_PimA-like, phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd19166, HemeO-bac, heme oxygenase found in pathogenic bacteria. This subfamily contains bacterial heme oxygenase (HO, EC 1.14.14.18), where HO is part of a pathway for iron acquisition from host heme and heme products. Most of these proteins have yet to be characterized. HO catalyzes the rate limiting step in the degradation of heme to biliverdin in a multi-step reaction. HO is essential for recycling of iron from heme which is used as a substrate and cofactor for its own degradation to biliverdin, iron, and carbon monoxide. This family includes heme oxygenase (pa-HO) from Pseudomonas aeruginosa, an opportunistic pathogen that causes a variety of systemic infections, particularly in those afflicted with cystic fibrosis, as well as cancer and AIDS patients who are immunosuppressed. Pa-HO, expressed by the PigA gene, is critical for the acquisition of host iron since there is essentially no free iron in mammals, and is unusual since it hydroxylates heme predominantly at the delta-meso heme carbon, while all other well-studied HOs hydroxylate the alpha-meso carbon. Also included in this family is Neisseria meningitidis HO which is substantially different from the human HO, with the reaction product being ferric biliverdin IXalpha rather than reduced iron and free biliverdin IXalpha. HO shares tertiary structure similarity to methane monooxygenase (EC 1.14.13.25), ribonucleotide reductase (EC 1.17.4.1) and thiaminase II (EC 3.5.99.2), but shares little sequence homology.
cd04776, HTH_GnyR, Helix-Turn-Helix DNA binding domain of the regulatory protein GnyR. Putative helix-turn-helix (HTH) regulatory protein, GnyR, and other related proteins. GnyR belongs to the gnyRDBHAL cluster, which is involved in acyclic isoprenoid degradation in Pseudomonas aeruginosa. These proteins share the N-terminal DNA binding domain with other transcription regulators of the MerR superfamily that promote transcription by reconfiguring the spacer between the -35 and -10 promoter elements. A typical MerR regulator is comprised of distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their conserved N-terminal domains contain predicted winged HTH motifs that mediate DNA binding, while the dissimilar C-terminal domains bind specific coactivator molecules.
cd17328, MFS_spinster_like, Protein spinster and spinster homologs of the Major Facilitator Superfamily of transporters. The protein spinster family includes Drosophila protein spinster, its vertebrate homologs, and similar proteins. Humans contain three homologs called protein spinster homologs 1 (SPNS1), 2 (SPNS2), and 3 (SPNS3). Protein spinster and its homologs may be sphingolipid transporters that play central roles in endosomes and/or lysosomes storage. SPNS2 is also called sphingosine 1-phosphate (S1P) transporter and is required for migration of myocardial precursors. S1P is a secreted lipid mediator that plays critical roles in cardiovascular, immunological, and neural development and function. The spinster-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
pfam02657, SufE, Fe-S metabolism associated domain. This family consists of the SufE-related proteins. These have been implicated in Fe-S metabolism and export).
cd01156, IVD, Isovaleryl-CoA dehydrogenase. Isovaleryl-CoA dehydrogenase (IVD) is an is an acyl-CoA dehydrogenase, which catalyzes the third step in leucine catabolism, the conversion of isovaleryl-CoA (3-methylbutyryl-CoA) into 3-methylcrotonyl-CoA. IVD is a homotetramer and has the greatest affinity for small branched chain substrates.
cd07938, DRE_TIM_HMGL, 3-hydroxy-3-methylglutaryl-CoA lyase, catalytic TIM barrel domain. 3-hydroxy-3-methylglutaryl-CoA lyase (HMGL) catalyzes the cleavage of HMG-CoA to acetyl-CoA and acetoacetate, one of the terminal steps in ketone body generation and leucine degradation, and is a key enzyme in the pathway that supplies metabolic fuel to extrahepatic tissues. Mutations in HMGL cause a human autosomal recessive disorder called primary metabolic aciduria that affects ketogenesis and leucine catabolism and can be fatal due to an inability to tolerate hypoglycemia. HMGL has a TIM barrel domain with a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. The cleavage of HMG-CoA requires the presence of a divalent cation like Mg2+ or Mn2+, and the reaction is thought to involve general acid/base catalysis. This family belongs to the DRE-TIM metallolyase superfamily. DRE-TIM metallolyases include 2-isopropylmalate synthase (IPMS), alpha-isopropylmalate synthase (LeuA), 3-hydroxy-3-methylglutaryl-CoA lyase, homocitrate synthase, citramalate synthase, 4-hydroxy-2-oxovalerate aldolase, re-citrate synthase, transcarboxylase 5S, pyruvate carboxylase, AksA, and FrbC. These members all share a conserved triose-phosphate isomerase (TIM) barrel domain consisting of a core beta(8)-alpha(8) motif with the eight parallel beta strands forming an enclosed barrel surrounded by eight alpha helices. The domain has a catalytic center containing a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel. In addition, the catalytic site includes three invariant residues - an aspartate (D), an arginine (R), and a glutamate (E) - which is the basis for the domain name "DRE-TIM".
The bacterium proteins that are colored denote the protein is present at specific phage-related keywords (such as 'capsid', 'head', 'integrase', 'plate', 'tail', 'fiber', 'coat', 'transposase', 'portal', 'terminase', 'protease' or 'lysin' and 'tRNA')
The bacterium proteins that are colored denote the protein is present at specific phage-related keywords (such as 'capsid', 'head', 'integrase', 'plate', 'tail', 'fiber', 'coat', 'transposase', 'portal', 'terminase', 'protease' or 'lysin' and 'tRNA')